Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Rev. Assoc. Med. Bras. (1992) ; 66(12):1666-1672, 2020.
Article in English | LILACS (Americas) | ID: grc-745352

ABSTRACT

SUMMARY BACKGROUND: The COVID-19 pandemic has affected the entire world, posing a serious threat to human health. T cells play a critical role in the cellular immune response against viral infections. We aimed to reveal the relationship between T cell subsets and disease severity. METHODS: 40 COVID-19 patients were randomly recruited in this cross-sectional study. All cases were confirmed by quantitative RT-PCR. Patients were divided into two equivalent groups, one severe and one nonsevere. Clinical, laboratory and flow cytometric data were obtained from both clinical groups and compared. RESULTS: Lymphocyte subsets, CD4+ and CD8+ T cells, memory CD4+ T cells, memory CD8+ T cells, naive CD4+ T cells, effector memory CD4+ T cells, central memory CD4+ T cells, and CD3+CD4+ CD25+ T cells were significantly lower in severe patients. The naive T cell/CD4 + EM T cell ratio, which is an indicator of the differentiation from naive T cells to memory cells, was relatively reduced in severe disease. Peripheral CD4+CD8+ double-positive T cells were notably lower in severe presentations of the disease (median DP T cells 11.12 µL vs 1.95 µL;p<0.001). CONCLUSIONS: As disease severity increases in COVID-19 infection, the number of T cell subsets decreases significantly. Suppression of differentiation from naive T cells to effector memory T cells is the result of severe impairment in adaptive immune functions. Peripheral CD4+CD8+ double-positive T cells were significantly reduced in severe disease presentations and may be a useful marker to predict disease severity. RESUMO OBJETIVO: A pandemia de COVID-19 tem afetado o mundo todo, constituindo uma ameaça grave para a saúde humana. As células T desempenham um papel crítico na imunidade celular contra infecções virais. Procuramos desvendar a relação entre sub grupos de células T e a severidade da doença. MÉTODOS: Um total de 40 pacientes com COVID-19 foram aleatoriamente recrutados para o presente estudo transversal. Todos os casos foram confirmados por RT-PCR quantitativo. Os pacientes foram divididos em dois grupos equivalentes, um grave e um não-grave. Os dados da avaliação clínica, laboratorial e da citometria de fluxo foram obtidos para ambos os grupos e comparados. RESULTADOS: Os subconjuntos de linfócitos, células T CD4+ e CD8+, células T de memória CD4+, células T de memória CD8+, células T CD4+ virgens, células T efetoras CD4+, células T de memória central CD4+ e células T CD3+ CD4+ CD25+ estavam significativamente mais baixas nos pacientes graves. A razão células T virgens/células T efetoras TCD4+, que é um indicador da diferenciação entre células T virgens e células de memória, estava relativamente reduzida em casos graves da doença. As células T duplo-positivas CD4+CD8+ periféricas estavam notavelmente mais baixas em casos graves da doença (mediana das células T DP: 11,12 µL vs. 1,95 µL;p<0,001). CONCLUSÃO: Conforme aumenta a gravidade da doença nos casos de COVID-19, o número de subconjuntos de células T diminui significativamente. A supressão da diferenciação de células T virgens para células T efetoras é o resultado do comprometimento grave das funções imunológicas adaptativas. As células T duplo-positivas CD4+CD8+ periféricas estavam notavelmente mais baixas em casos graves da doença e podem ser um marcador útil para predizer a severidade da doença.

2.
Rev Assoc Med Bras (1992) ; 66(12): 1666-1672, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-983852

ABSTRACT

BACKGROUND: The COVID-19 pandemic has affected the entire world, posing a serious threat to human health. T cells play a critical role in the cellular immune response against viral infections. We aimed to reveal the relationship between T cell subsets and disease severity. METHODS: 40 COVID-19 patients were randomly recruited in this cross-sectional study. All cases were confirmed by quantitative RT-PCR. Patients were divided into two equivalent groups, one severe and one nonsevere. Clinical, laboratory and flow cytometric data were obtained from both clinical groups and compared. RESULTS: Lymphocyte subsets, CD4+ and CD8+ T cells, memory CD4+ T cells, memory CD8+ T cells, naive CD4+ T cells, effector memory CD4+ T cells, central memory CD4+ T cells, and CD3+CD4+ CD25+ T cells were significantly lower in severe patients. The naive T cell/CD4 + EM T cell ratio, which is an indicator of the differentiation from naive T cells to memory cells, was relatively reduced in severe disease. Peripheral CD4+CD8+ double-positive T cells were notably lower in severe presentations of the disease (median DP T cells 11.12 µL vs 1.95 µL; p< 0.001). CONCLUSIONS: As disease severity increases in COVID-19 infection, the number of T cell subsets decreases significantly. Suppression of differentiation from naive T cells to effector memory T cells is the result of severe impairment in adaptive immune functions. Peripheral CD4+CD8+ double-positive T cells were significantly reduced in severe disease presentations and may be a useful marker to predict disease severity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , Adaptive Immunity , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Cell Differentiation , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
3.
Turk J Med Sci ; 51(1): 45-48, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-782232

ABSTRACT

Background/aim: In this study, we aim to investigate the efficacy of convalescent plasma (CP) according to blood groups (BGs) in the treatment of critically ill patients diagnosed with COVID-19. Materials and methods: Twenty-eight critically ill and laboratory-confirmed COVID-19 patients who were admitted to the intensive care unit (ICU) of Sakarya University, Medical Faculty were included in the study. Patients were divided into 2 groups: patients who received anti-A antibody (Ab) containing CP (BG O and B) and those who did not receive CP containing anti-A Ab (BG A and AB). Results: Among the 28 patients, 13 patients received anti-A Ab containing CP (BG; B: 6, O: 7) and 15 patients did not receive anti-A Ab CP (BG; A: 13, AB: 2). Duration in ICU, the rates of mechanical ventilation (MV) support and vasopressor support, the case fatality rate, and the discharge rate were lower in patients who received CP containing anti-A Ab than not containing anti-A Ab CP. However, only the difference in the rate of MV support achieved statistically significance (P = 0.04) Conclusion: In our study, it was observed that the efficiency of CP without anti-A antibody was lower than that of plasma containing anti-A antibody, although it was not statistically significant. This result is thought to be due to the anti-A antibody's ability to block the ACE2 receptor. We believe that this hypothesis should be investigated in controlled studies with higher patient numbers.


Subject(s)
ABO Blood-Group System , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , ABO Blood-Group System/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL